
Exam Calculus 2

11 April 2023, 18:15-20:15

The exam consists of 4 problems. You have 120 minutes to answer the questions. You
can achieve 100 points which includes a bonus of 10 points. Calculators, books and
notes are not permitted.

1. [6+6+8=20 Points] Consider the function f : R2 → R defined as

f(x, y) =

{
x3+xy2+2x2+2y2

x2+y2
if (x, y) 6= (0, 0)

c if (x, y) = (0, 0)
,

where c ∈ R.

(a) Determine c such that f becomes continuous at (x, y) = (0, 0).

(b) For the value of c found in part (a) and u = (v, w) ∈ R2 a unit vector, determine the
directional derivative Duf(0, 0).

(c) Use the definition of differentiability to show that for the value of c found in part (a),
the function f is differentiable at (x, y) = (0, 0) and determine the derivative of f at
(x, y) = (0, 0).

2. [5+7+8=20 Points] Let S ⊂ R2 be the ellipse defined by the equation

S = {(x, y) ∈ R2 | 3x2 + 2xy + 3y2 = 16}.

(a) For each point (x0, y0) ∈ S, determine the tangent line of S at (x0, y0).

(b) Use the Implicit Function Theorem to determine the points (x0, y0) in S where S can be
considered to be locally the graph of a function f of x. At such points, compute the
derivative of f and show that the tangent line found in (a) coincides with the graph of the
linearization of f .

(c) Use the method of Lagrange multipliers to determine the points on the ellipse S that are
closest to and furthest away from the origin, respectively.

3. [8+12+5=25 Points] For constants a, b ∈ R, define the vector field F : R3 → R3 as

F(x, y, z) = ax sin(πy) i + (x2 cos(πy) + bye−z) j + y2e−z k

for (x, y, z) ∈ R3.

(a) Show that F to be conservative requires a = 2/π and b = −2.

(b) Determine a scalar potential for F for the values of a and b given in part (a).



(c) For the values of a and b given in part (a), compute the line integral
´
C
F · dr where C is

the curve parametrized by

r(t) = cos t i + sin2 t j + sin(2t)k

with t ∈ [0, π/2].

4. [25 Points] Let S ⊂ R3 be the quarter of the unit disk contained in the first quadrant of the
(y, z)-plane, i.e. S = {(x, y, z) ∈ R3 |x = 0, y2 + z2 ≤ 1 and y, z ≥ 0}. Let S be oriented by
the unit vector i. Let F : R3 → R3 be the vector field defined as F(x, y, z) = y i + z j + xk for
(x, y, z) ∈ R3. Verify Stokes’ Theorem for the given surface S and vector field F by computing
both sides of the equality

˜
S
(∇× F) · dS =

¸
∂S

F · ds.



Solutions

1. (a) In order to determine the limit of f at (x, y) = (0, 0) we use polar coordinates (x, y) =
(r cos θ, r sin θ) for (x, y) 6= (0, 0). Then

f(x, y) =
r3 cos3 θ + r3 cos θ sin2 θ + 2r2 cos2 θ + 2r2 sin2 θ

r2 cos2 θ + r2 sin2 θ

= r(cos3 θ + cos θ sin2 θ) + 2.

Considering the limit r → 0 yields that f becomes continuous at (x, y) = (0, 0).

(b) Let u = (v, w) ∈ R2 with v2 + w2 = 1. Then

Duf(0, 0) = lim
h→0

f(hv, hw)− f(0, 0)

h

= lim
h→0

1

h

(
h3v3 + h3vw2 + 2h2v2 + 2h2w2

h2(v2 + w2)
− 2

)
= lim

h→0

1

h3
(
h3v3 + h3vw2 + 2h2 − 2h2

)
= lim

h→0
v3 + vw2

= v3 + vw2

= v(v2 + w2)

= v,

where in the third and last equality we used v2 + w2 = 1.

(c) According to part (b) we have fx(0, 0) = 1 (choose u = (v, w) = (1, 0)) and fy(0, 0) = 0
(choose u = (v, w) = (0, 1)). So the linearization of f at (x, y) = (0, 0) is given by

L(x, y) = f(0, 0) + fx(0, 0)(x− 0) + fy(0, 0)(y − 0) = 2 + x.

For the differentiability of f at (0, 0) we have that the limit of

f(x, y)− L(x, y)

‖(x, y)− (0, 0)‖

is 0 for (x, y)→ (0, 0). For (x, y) 6= (0, 0), we have

f(x, y)− L(x, y)

‖(x, y)− (0, 0)‖
=

1

(x2 + y2)1/2

(
x3 + xy2 + 2x2 + 2y2

x2 + y2
− (2 + x)

)
=

1

(x2 + y2)3/2
(
x3 + xy2 + 2x2 + 2y2 − 2(x2 + y2)− x(x2 + y2)

)
=

1

(x2 + y2)3/2
(0)

which converges to 0 as (x, y) → (0, 0). The function f is hence differentiable at (x, y) =
(0, 0).

The derivative is
∇f(0, 0) = (fx(0, 0), fy(0, 0)) = (1, 0).



2. (a) S is the level set of the function F : R2 → R, (x, y) 7→ F (x, y) = 3x2 + 2xy + 3y2 for the
value 16. For (x0, y0) ∈ S, ∇F (x0, y0) is perpendicular to S at (x0, y0). This gives the
tangent line of S at (x0, y0)

Fx(x0, y0)(x− x0) + Fy(x0, y0)(y − y0) = 0.

Using ∇F (x0, y0) = (6x0 + 2y0, 6y0 + 2x0) we get the tangent line

(6x0 + 2y0)(x− x0) + (6y0 + 2x0)(y − y0) = 0

⇔ (6x0 + 2y0)x+ (6y0 + 2x0)y = 6(x20 + y20) + 4x0y0.

(b) For (x0, y0) ∈ S to be a point where S is locally the graph of a function x 7→ f(x), (x0, y0)
needs to satisfy

Fy(x0, y0) 6= 0

with F defined as in part (a). Hence at (x0, y0) ∈ S with 2x0 + 6y0 6= 0, S is locally a
graph over the x-axis.

Let (x0, y0) ∈ S be such a point. Then

f ′(x0) = −Fx(x0, y0)
Fy(x0, y0)

= −6x0 + 2y0
6y0 + 2x0

.

The linearization of f at x0 is

L(x) = f(x0) + f ′(x0)(x− x0) = y0 −
6x0 + 2y0
6y0 + 2x0

(x− x0).

The graph of L is given by the equation

L(x) = y ⇔ y − y0 = −6x0 + 2y0
6y0 + 2x0

(x− x0)

which after after multiplication by 6y0 + 2x0 gives the equation for the tangent line found
in part (a).

(c) We need to find the extrema of (x, y) 7→ g(x, y) = x2+y2 under the constraint F (x, y) = 16
with F defined as in part (a). By the Theorem on Lagrange Multipliers there exists a λ ∈ R
such that ∇F (x, y) = λ∇g(x, y) at each such extremum . This gives the set of equations

Fx(x, y) = λgx(x, y)
Fy(x, y) = λgy(x, y)
F (x, y) = 16

⇔
6x+ 2y = 2λx
6y + 2x = 2λy

3x2 + 2xy + 3y2 = 16
.

We can exclude x = 0 as this would also give y = 0 by the first equation which together do
however not satisfy the third equation. Similarly we can exclude y = 0. For (x, y) 6= (0, 0),
we get from the first two equations

λ =
6x+ 2y

2x
=

6y + 2x

2y
.

Hence
3 +

y

x
= 3 +

x

y
⇔ y

x
=
x

y
⇔ x = ±y.



The third equation then yields

3x2 ± 2x2 + 3x2 = 16

⇔ 8x2 = 16 for x = y or 4x2 = 16 for x = −y
⇔ x = ±

√
2 for x = y or x = ±2 for x = −y.

As g(±
√

2,±
√

2) = 4 and g(±2,∓2) = 8 and g needs to attain its extrema on the compact
set S by the WeierstraßExtreme Value Theorem, the points (x, y) ∈ S closest to the origin
are (x, y) = ±

√
2,±
√

2) and the points furthest away from the origin are (x, y) = (±2,∓2).

3. (a) The curl of F is

∇× F(x, y, z) =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

ax sin(πy) x2 cos(πy) + bye−z y2e−z

∣∣∣∣∣∣
= (2ye−z + bye−z) i + (0− 0) j + (2x cos(πy)− axπ cos(πy))k

This to vanish for all (x, y, z) ∈ R3 requires a = 2
π

and b = −2. As R3 is simply connected,

F is conservative for a = 2
π

and b = −2.

(b) Let f : R3 → R, (x, y, z) 7→ f(x, y, z) be a potential function. Then

∂f

∂x
=

2

π
x sin(πy) (1)

∂f

∂y
= x2 cos(πy)− 2ye−z (2)

∂f

∂z
= y2e−z (3)

Integrating (1) with respect to x gives

f(x, y, z) =
1

π
x2 sin(πy) + g(y, z),

where g(y, z) is an integration constant that can depend on y and z. Inserting this in (2)
gives

x2 cos(πy) +
∂g

∂y
= x2 cos(πy)− 2ye−z

which gives
∂g

∂y
= −2ye−z.

Integrating the latter equation with respect to y gives

g(y, z) = −y2e−z + h(z),

where h(z) is an integration constant that can depend on z. So we have

f(x, y, z) =
1

π
x2 sin(πy)− y2e−z + h(z).



Inserting this in (3) gives
y2e−z + h′(z) = y2e−z

which yields h(z) = c for some constant c ∈ R. So we get the potential function

f(x, y, z) =
1

π
x2 sin(πy)− y2e−z + c.

(c) We have r(0) = i and r
(
π
2

)
= j. By the Fundamental Theorem of Line Integrals

ˆ
C

F · dr = f(j)− f(i) = −1 + c− c = −1.

4. We start by computing the left hand side of the equality. The curl of F is

∇× F(x, y, z) =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

y z x

∣∣∣∣∣∣
= −1 i− 1 j− 1k.

Parametrize the quarter disk S by

φ(r, θ) = (0, r cos θ, r sin θ)

with (r, θ) ∈ [0, 1]× [0, π
2
]. From

∂φ

∂r
(r, θ) = (0, cos θ, sin θ)

and
∂φ

∂θ
(r, θ) = (0,−r sin θ, r cos θ)

we get the normal vector

∂φ

∂r
× ∂φ

∂θ
= (r cos2 θ + r sin2 θ) i = r i.

The normal vector is consistent with the given orientation on S. Hence

¨
S

(∇× F) · dS =

ˆ 1

0

ˆ π/2

0

(∇× F) ·
(
∂φ

∂r
× ∂φ

∂θ

)
dθdr

=

ˆ 1

0

ˆ π/2

0

(−1,−1,−1) · (r, 0, 0) dθdr

= −
ˆ 1

0

ˆ π/2

0

r dθdr

= −π
4
.



We now compute the right hand side of the equality. The boundary of S consists of the three
smooth pieces C1 (the line segment between (0, 0, 0) and (0, 0, 1)) C2 (the line segment between
(0, 0, 0) and (0, 1, 0)) and C3 (the arc in the (y, z)-plane from (0, 1, 0) to (0, 0, 1)). These have
parametrizations consistent with the orientation of S given by

r1(t) = (0, 0, (1− t)), t ∈ [0, 1],

r2(t) = (0, t, 0), t ∈ [0, 1],

r3(t) = (0, cos t, sin t), t ∈ [0, π/2],

respectively. Hence
˛
∂S

F · ds =

ˆ
C1

F · dr1 +

ˆ
C2

F · dr2 +

ˆ
C3

F · dr3.

As r′1(t) = (0, 0,−1) is perpendicular to F(r1) = (1− t)k and r′2(t) = (0, 1, 0) is perpendicular
to F(r2(t)) = t j, the first two integrals vanish. The third integral gives

ˆ
C3

F · dr3 =

ˆ π/2

0

F(r3(t)) · r′3(t) dt

=

ˆ π/2

0

(cos t, sin t, 0) · (0,− sin t, cos t) dt

= −
ˆ π/2

0

sin2 t dt

=
1

2
(sin t cos t− t)

∣∣∣∣t=π/2
t=0

= −π
4

which agrees with the result above.


