

Exam Calculus 2

11 April 2023, 18:15-20:15

university of
groningen

The exam consists of 4 problems. You have 120 minutes to answer the questions. You can achieve 100 points which includes a bonus of 10 points. Calculators, books and notes are not permitted.

1. [6+6+8=20 Points] Consider the function $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ defined as

$$f(x, y) = \begin{cases} \frac{x^3 + xy^2 + 2x^2 + 2y^2}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0) \\ c & \text{if } (x, y) = (0, 0) \end{cases},$$

where $c \in \mathbb{R}$.

- Determine c such that f becomes continuous at $(x, y) = (0, 0)$.
- For the value of c found in part (a) and $\mathbf{u} = (v, w) \in \mathbb{R}^2$ a unit vector, determine the directional derivative $D_{\mathbf{u}}f(0, 0)$.
- Use the definition of differentiability to show that for the value of c found in part (a), the function f is differentiable at $(x, y) = (0, 0)$ and determine the derivative of f at $(x, y) = (0, 0)$.

2. [5+7+8=20 Points] Let $S \subset \mathbb{R}^2$ be the ellipse defined by the equation

$$S = \{(x, y) \in \mathbb{R}^2 \mid 3x^2 + 2xy + 3y^2 = 16\}.$$

- For each point $(x_0, y_0) \in S$, determine the tangent line of S at (x_0, y_0) .
- Use the Implicit Function Theorem to determine the points (x_0, y_0) in S where S can be considered to be locally the graph of a function f of x . At such points, compute the derivative of f and show that the tangent line found in (a) coincides with the graph of the linearization of f .
- Use the method of Lagrange multipliers to determine the points on the ellipse S that are closest to and furthest away from the origin, respectively.

3. [8+12+5=25 Points] For constants $a, b \in \mathbb{R}$, define the vector field $\mathbf{F} : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ as

$$\mathbf{F}(x, y, z) = ax \sin(\pi y) \mathbf{i} + (x^2 \cos(\pi y) + b y e^{-z}) \mathbf{j} + y^2 e^{-z} \mathbf{k}$$

for $(x, y, z) \in \mathbb{R}^3$.

- Show that \mathbf{F} to be conservative requires $a = 2/\pi$ and $b = -2$.
- Determine a scalar potential for \mathbf{F} for the values of a and b given in part (a).

(c) For the values of a and b given in part (a), compute the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ where C is the curve parametrized by

$$\mathbf{r}(t) = \cos t \mathbf{i} + \sin^2 t \mathbf{j} + \sin(2t) \mathbf{k}$$

with $t \in [0, \pi/2]$.

4. [25 Points] Let $S \subset \mathbb{R}^3$ be the quarter of the unit disk contained in the first quadrant of the (y, z) -plane, i.e. $S = \{(x, y, z) \in \mathbb{R}^3 \mid x = 0, y^2 + z^2 \leq 1 \text{ and } y, z \geq 0\}$. Let S be oriented by the unit vector \mathbf{i} . Let $\mathbf{F} : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ be the vector field defined as $\mathbf{F}(x, y, z) = y \mathbf{i} + z \mathbf{j} + x \mathbf{k}$ for $(x, y, z) \in \mathbb{R}^3$. Verify Stokes' Theorem for the given surface S and vector field \mathbf{F} by computing both sides of the equality $\iint_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = \oint_{\partial S} \mathbf{F} \cdot d\mathbf{s}$.

Solutions

1. (a) In order to determine the limit of f at $(x, y) = (0, 0)$ we use polar coordinates $(x, y) = (r \cos \theta, r \sin \theta)$ for $(x, y) \neq (0, 0)$. Then

$$\begin{aligned} f(x, y) &= \frac{r^3 \cos^3 \theta + r^3 \cos \theta \sin^2 \theta + 2r^2 \cos^2 \theta + 2r^2 \sin^2 \theta}{r^2 \cos^2 \theta + r^2 \sin^2 \theta} \\ &= r(\cos^3 \theta + \cos \theta \sin^2 \theta) + 2. \end{aligned}$$

Considering the limit $r \rightarrow 0$ yields that f becomes continuous at $(x, y) = (0, 0)$.

(b) Let $\mathbf{u} = (v, w) \in \mathbb{R}^2$ with $v^2 + w^2 = 1$. Then

$$\begin{aligned} D_{\mathbf{u}} f(0, 0) &= \lim_{h \rightarrow 0} \frac{f(hv, hw) - f(0, 0)}{h} \\ &= \lim_{h \rightarrow 0} \frac{1}{h} \left(\frac{h^3 v^3 + h^3 v w^2 + 2h^2 v^2 + 2h^2 w^2}{h^2(v^2 + w^2)} - 2 \right) \\ &= \lim_{h \rightarrow 0} \frac{1}{h^3} (h^3 v^3 + h^3 v w^2 + 2h^2 v^2 - 2h^2) \\ &= \lim_{h \rightarrow 0} v^3 + v w^2 \\ &= v^3 + v w^2 \\ &= v(v^2 + w^2) \\ &= v, \end{aligned}$$

where in the third and last equality we used $v^2 + w^2 = 1$.

(c) According to part (b) we have $f_x(0, 0) = 1$ (choose $\mathbf{u} = (v, w) = (1, 0)$) and $f_y(0, 0) = 0$ (choose $\mathbf{u} = (v, w) = (0, 1)$). So the linearization of f at $(x, y) = (0, 0)$ is given by

$$L(x, y) = f(0, 0) + f_x(0, 0)(x - 0) + f_y(0, 0)(y - 0) = 2 + x.$$

For the differentiability of f at $(0, 0)$ we have that the limit of

$$\frac{f(x, y) - L(x, y)}{\|(x, y) - (0, 0)\|}$$

is 0 for $(x, y) \rightarrow (0, 0)$. For $(x, y) \neq (0, 0)$, we have

$$\begin{aligned} \frac{f(x, y) - L(x, y)}{\|(x, y) - (0, 0)\|} &= \frac{1}{(x^2 + y^2)^{1/2}} \left(\frac{x^3 + xy^2 + 2x^2 + 2y^2}{x^2 + y^2} - (2 + x) \right) \\ &= \frac{1}{(x^2 + y^2)^{3/2}} (x^3 + xy^2 + 2x^2 + 2y^2 - 2(x^2 + y^2) - x(x^2 + y^2)) \\ &= \frac{1}{(x^2 + y^2)^{3/2}} (0) \end{aligned}$$

which converges to 0 as $(x, y) \rightarrow (0, 0)$. The function f is hence differentiable at $(x, y) = (0, 0)$.

The derivative is

$$\nabla f(0, 0) = (f_x(0, 0), f_y(0, 0)) = (1, 0).$$

2. (a) S is the level set of the function $F : \mathbb{R}^2 \rightarrow \mathbb{R}$, $(x, y) \mapsto F(x, y) = 3x^2 + 2xy + 3y^2$ for the value 16. For $(x_0, y_0) \in S$, $\nabla F(x_0, y_0)$ is perpendicular to S at (x_0, y_0) . This gives the tangent line of S at (x_0, y_0)

$$F_x(x_0, y_0)(x - x_0) + F_y(x_0, y_0)(y - y_0) = 0.$$

Using $\nabla F(x_0, y_0) = (6x_0 + 2y_0, 6y_0 + 2x_0)$ we get the tangent line

$$\begin{aligned} (6x_0 + 2y_0)(x - x_0) + (6y_0 + 2x_0)(y - y_0) &= 0 \\ \Leftrightarrow (6x_0 + 2y_0)x + (6y_0 + 2x_0)y &= 6(x_0^2 + y_0^2) + 4x_0y_0. \end{aligned}$$

(b) For $(x_0, y_0) \in S$ to be a point where S is locally the graph of a function $x \mapsto f(x)$, (x_0, y_0) needs to satisfy

$$F_y(x_0, y_0) \neq 0$$

with F defined as in part (a). Hence at $(x_0, y_0) \in S$ with $2x_0 + 6y_0 \neq 0$, S is locally a graph over the x -axis.

Let $(x_0, y_0) \in S$ be such a point. Then

$$f'(x_0) = -\frac{F_x(x_0, y_0)}{F_y(x_0, y_0)} = -\frac{6x_0 + 2y_0}{6y_0 + 2x_0}.$$

The linearization of f at x_0 is

$$L(x) = f(x_0) + f'(x_0)(x - x_0) = y_0 - \frac{6x_0 + 2y_0}{6y_0 + 2x_0}(x - x_0).$$

The graph of L is given by the equation

$$L(x) = y \Leftrightarrow y - y_0 = -\frac{6x_0 + 2y_0}{6y_0 + 2x_0}(x - x_0)$$

which after multiplication by $6y_0 + 2x_0$ gives the equation for the tangent line found in part (a).

(c) We need to find the extrema of $(x, y) \mapsto g(x, y) = x^2 + y^2$ under the constraint $F(x, y) = 16$ with F defined as in part (a). By the Theorem on Lagrange Multipliers there exists a $\lambda \in \mathbb{R}$ such that $\nabla F(x, y) = \lambda \nabla g(x, y)$ at each such extremum. This gives the set of equations

$$\begin{aligned} F_x(x, y) &= \lambda g_x(x, y) & 6x + 2y &= 2\lambda x \\ F_y(x, y) &= \lambda g_y(x, y) \Leftrightarrow & 6y + 2x &= 2\lambda y \\ F(x, y) &= 16 & 3x^2 + 2xy + 3y^2 &= 16 \end{aligned}$$

We can exclude $x = 0$ as this would also give $y = 0$ by the first equation which together do however not satisfy the third equation. Similarly we can exclude $y = 0$. For $(x, y) \neq (0, 0)$, we get from the first two equations

$$\lambda = \frac{6x + 2y}{2x} = \frac{6y + 2x}{2y}.$$

Hence

$$3 + \frac{y}{x} = 3 + \frac{x}{y} \Leftrightarrow \frac{y}{x} = \frac{x}{y} \Leftrightarrow x = \pm y.$$

The third equation then yields

$$\begin{aligned} 3x^2 \pm 2x^2 + 3x^2 &= 16 \\ \Leftrightarrow 8x^2 &= 16 \text{ for } x = y \text{ or } 4x^2 = 16 \text{ for } x = -y \\ \Leftrightarrow x &= \pm\sqrt{2} \text{ for } x = y \text{ or } x = \pm 2 \text{ for } x = -y. \end{aligned}$$

As $g(\pm\sqrt{2}, \pm\sqrt{2}) = 4$ and $g(\pm 2, \mp 2) = 8$ and g needs to attain its extrema on the compact set S by the Weierstraß Extreme Value Theorem, the points $(x, y) \in S$ closest to the origin are $(x, y) = \pm\sqrt{2}, \pm\sqrt{2}$ and the points furthest away from the origin are $(x, y) = (\pm 2, \mp 2)$.

3. (a) The curl of F is

$$\begin{aligned} \nabla \times \mathbf{F}(x, y, z) &= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ ax \sin(\pi y) & x^2 \cos(\pi y) + b y e^{-z} & y^2 e^{-z} \end{vmatrix} \\ &= (2y e^{-z} + b y e^{-z}) \mathbf{i} + (0 - 0) \mathbf{j} + (2x \cos(\pi y) - a x \pi \cos(\pi y)) \mathbf{k} \end{aligned}$$

This to vanish for all $(x, y, z) \in \mathbb{R}^3$ requires $a = \frac{2}{\pi}$ and $b = -2$. As \mathbb{R}^3 is simply connected, F is conservative for $a = \frac{2}{\pi}$ and $b = -2$.

(b) Let $f : \mathbb{R}^3 \rightarrow \mathbb{R}$, $(x, y, z) \mapsto f(x, y, z)$ be a potential function. Then

$$\frac{\partial f}{\partial x} = \frac{2}{\pi} x \sin(\pi y) \quad (1)$$

$$\frac{\partial f}{\partial y} = x^2 \cos(\pi y) - 2y e^{-z} \quad (2)$$

$$\frac{\partial f}{\partial z} = y^2 e^{-z} \quad (3)$$

Integrating (1) with respect to x gives

$$f(x, y, z) = \frac{1}{\pi} x^2 \sin(\pi y) + g(y, z),$$

where $g(y, z)$ is an integration constant that can depend on y and z . Inserting this in (2) gives

$$x^2 \cos(\pi y) + \frac{\partial g}{\partial y} = x^2 \cos(\pi y) - 2y e^{-z}$$

which gives

$$\frac{\partial g}{\partial y} = -2y e^{-z}.$$

Integrating the latter equation with respect to y gives

$$g(y, z) = -y^2 e^{-z} + h(z),$$

where $h(z)$ is an integration constant that can depend on z . So we have

$$f(x, y, z) = \frac{1}{\pi} x^2 \sin(\pi y) - y^2 e^{-z} + h(z).$$

Inserting this in (3) gives

$$y^2 e^{-z} + h'(z) = y^2 e^{-z}$$

which yields $h(z) = c$ for some constant $c \in \mathbb{R}$. So we get the potential function

$$f(x, y, z) = \frac{1}{\pi} x^2 \sin(\pi y) - y^2 e^{-z} + c.$$

(c) We have $\mathbf{r}(0) = \mathbf{i}$ and $\mathbf{r}\left(\frac{\pi}{2}\right) = \mathbf{j}$. By the Fundamental Theorem of Line Integrals

$$\int_C \mathbf{F} \cdot d\mathbf{r} = f(\mathbf{j}) - f(\mathbf{i}) = -1 + c - c = -1.$$

4. We start by computing the left hand side of the equality. The curl of \mathbf{F} is

$$\begin{aligned} \nabla \times \mathbf{F}(x, y, z) &= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y & z & x \end{vmatrix} \\ &= -1\mathbf{i} - 1\mathbf{j} - 1\mathbf{k}. \end{aligned}$$

Parametrize the quarter disk S by

$$\phi(r, \theta) = (0, r \cos \theta, r \sin \theta)$$

with $(r, \theta) \in [0, 1] \times [0, \frac{\pi}{2}]$. From

$$\frac{\partial \phi}{\partial r}(r, \theta) = (0, \cos \theta, \sin \theta)$$

and

$$\frac{\partial \phi}{\partial \theta}(r, \theta) = (0, -r \sin \theta, r \cos \theta)$$

we get the normal vector

$$\frac{\partial \phi}{\partial r} \times \frac{\partial \phi}{\partial \theta} = (r \cos^2 \theta + r \sin^2 \theta) \mathbf{i} = r \mathbf{i}.$$

The normal vector is consistent with the given orientation on S . Hence

$$\begin{aligned} \iint_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S} &= \int_0^1 \int_0^{\pi/2} (\nabla \times \mathbf{F}) \cdot \left(\frac{\partial \phi}{\partial r} \times \frac{\partial \phi}{\partial \theta} \right) d\theta dr \\ &= \int_0^1 \int_0^{\pi/2} (-1, -1, -1) \cdot (r, 0, 0) d\theta dr \\ &= - \int_0^1 \int_0^{\pi/2} r d\theta dr \\ &= -\frac{\pi}{4}. \end{aligned}$$

We now compute the right hand side of the equality. The boundary of S consists of the three smooth pieces C_1 (the line segment between $(0, 0, 0)$ and $(0, 0, 1)$) C_2 (the line segment between $(0, 0, 0)$ and $(0, 1, 0)$) and C_3 (the arc in the (y, z) -plane from $(0, 1, 0)$ to $(0, 0, 1)$). These have parametrizations consistent with the orientation of S given by

$$\begin{aligned}\mathbf{r}_1(t) &= (0, 0, (1-t)), t \in [0, 1], \\ \mathbf{r}_2(t) &= (0, t, 0), t \in [0, 1], \\ \mathbf{r}_3(t) &= (0, \cos t, \sin t), t \in [0, \pi/2],\end{aligned}$$

respectively. Hence

$$\oint_{\partial S} \mathbf{F} \cdot d\mathbf{s} = \int_{C_1} \mathbf{F} \cdot d\mathbf{r}_1 + \int_{C_2} \mathbf{F} \cdot d\mathbf{r}_2 + \int_{C_3} \mathbf{F} \cdot d\mathbf{r}_3.$$

As $\mathbf{r}'_1(t) = (0, 0, -1)$ is perpendicular to $\mathbf{F}(r_1) = (1-t)\mathbf{k}$ and $\mathbf{r}'_2(t) = (0, 1, 0)$ is perpendicular to $\mathbf{F}(r_2(t)) = t\mathbf{j}$, the first two integrals vanish. The third integral gives

$$\begin{aligned}\int_{C_3} \mathbf{F} \cdot d\mathbf{r}_3 &= \int_0^{\pi/2} \mathbf{F}(r_3(t)) \cdot \mathbf{r}'_3(t) dt \\ &= \int_0^{\pi/2} (\cos t, \sin t, 0) \cdot (0, -\sin t, \cos t) dt \\ &= - \int_0^{\pi/2} \sin^2 t dt \\ &= \frac{1}{2} (\sin t \cos t - t) \bigg|_{t=0}^{t=\pi/2} \\ &= -\frac{\pi}{4}\end{aligned}$$

which agrees with the result above.